THE BOUNDARY ELEMENT METHOD FOR CALCULATING VISCO-RIGID PLASTIC FLOWS \dagger

Ye. G. Polishchuk
Ekaterinburg

(Received 24 June 1991)

Abstract

A method of solving the boundary-value problem for a visco-rigid plastic medium is considered which leads to the method of boundary elements.

1. STATEMENT OF THE PROBLEM

We will use the following notation: R^{3} is a space with fixed Euclidean coordinates x_{1}, x_{2} and $x_{3} ; \Omega$ is a region of R^{3} of class C^{1}, i.e. the boundary $\partial \Omega$ is a two-dimensional manifold of class C^{1} and the region Ω is situated locally on one side of $\partial \Omega ; v=\left\{v_{i}\right\}$ is the velocity field in $\Omega, e(v)=\left\{e_{i j}(v)\right\}$ is the strain rate tensor $\left(e_{i j}=1 / 2\left(\partial v_{i} / \partial x_{j}+\partial v_{j} / \partial x_{i}\right) i, j=1,2,3\right) ; \sigma=\left\{\sigma_{i j}\right\}$ is the stress tensor, and $s=\left\{s_{i j}\right\}$ is its deviator. For points from $\partial \Omega$, \mathbf{n} denotes the unit external normal, $\mathbf{F}=\left\{F_{i}\right\}\left(F_{i}=\sigma_{i j} n_{j}\right)$ is the force density vector on $\partial \Omega$ (here and below summation over repeated indices is assumed); for any vector a applied at a point of $\partial \Omega, a_{n}$ denotes its projection on the normal and a_{t} its tangential component, $|\mathbf{a}|$ is its length and (\cdot, \cdot) the corresponding scalar product; for $e=\left\{e_{i j}\right\}, q=\left\{q_{i j}\right\}$ we assume $\langle e, q\rangle=e_{i j} q_{i j}$ and $|e|=\left(e_{i j} e_{i j}\right)^{1 / 2}$; the measure in $R^{3} d x=d x_{1} d x_{2} d x_{3}$, and $d S$ is the measure on $\partial \Omega$ generated by $d x ; T(\Omega)[D(\Omega)]$ is the space of stress tensors $\sigma(x)$ [deviators $s(x)]$ in Ω with components from $L^{2}(\Omega) ; H^{1}(\Omega)$ is the space of vector ficlds $v=\left\{v_{i}\right\}$ in Ω such that v_{i} belongs to the Sobolev space $H^{1}(\Omega) ; H^{1 / 2}(\partial \Omega)$ is the space of vector fields $v=\left\{v_{i}\right\}$ in $\partial \Omega$ such that v_{i} belongs to the Sobolev space $H^{1 / 2}(\partial \Omega) ; H^{-1 / 2}(\partial \Omega)$ is the space of linear continuous functionals on $H^{1 / 2}(\partial \Omega)$.

Consider a visco-rigid plastic medium, that is, a medium which is incompressible and for which the deviator of the stress tensor is defined [1] by the plastic potential

$$
\varphi(e)=1 / 2 \mu|e|^{2}+\tau_{s}|e|
$$

where μ is the coefficient of viscosity and τ_{s} is the yield point. We require the deviator s to belong to the subdifferential $\partial \varphi[e(v)]$, that is $s=\mu e(v)+\tau_{s} e(v) /|e(v)|$ if $e(v) \neq 0$, and $|s| \leqslant \tau_{s}$ if $e(v)=0$.

For slow (quasi-stationary) processes, the real velocity and stress fields are defined by the following boundary-value problem.

Problem 1 . In the region Ω, it is required to find the velocity field \mathbf{v} and the stress tensor σ satisfying the following conditions:

1. the velocity field satisfies the condition $\operatorname{div}(v)=0$;
2. the equilibrium equations $\partial \sigma_{i j} / \partial x_{j}=0, i=1,2,3$ apply;
3. the equation of state of the medium $s \in \partial \varphi(e(v))$;
4. boundary conditions: the boundary $\partial \Omega$ consists of three parts with non-zero areas $\partial \Omega_{F}, \partial \Omega_{v}$, $\partial \Omega_{c}$.

Here $\partial \Omega_{F}$ is the part of the surface where the forces $\mathbf{F}=\mathbf{F}^{*}$ are given; $\partial \Omega_{v}$ is the part of the surface where the velocities $\mathbf{v}=\mathbf{v}^{*}$ are given; $\partial \Omega_{c}$ is the area of contact with the instrument, on which the kinetic constraint and condition of friction described below apply: (a) for the field \mathbf{v} and
velocity of the instrument \mathbf{w}, the normal components are equal; (b) the tangential components \mathbf{f}_{t} of the force \mathbf{F} satisfies the condition $\left|\mathbf{F}_{t}\right| \leqslant k=$ const, where if $\left|\mathbf{F}_{t}\right|<k$ at a given point, then $\mathbf{v}_{t}=\mathbf{w}_{t}$ (sticking); but if $\left|\mathbf{F}_{t}\right|=k$, then the vector $\left(\mathbf{v}_{t}-\mathbf{w}_{t}\right)$ is in the opposite direction to \mathbf{F}_{t} (sliding).

2. VARIATIONAL FORMULATION

Let

$$
\begin{aligned}
& A=\left\{\mathrm{v} \in H^{1}(\Omega): v=v^{*} \text { на } \partial \Omega_{v}, \quad v_{n}=w_{n} \text { on } \partial \Omega_{c}\right\} \\
& M=\left\{\mathrm{v} \in H^{1}(\Omega): \operatorname{div}(v)=0\right\}
\end{aligned}
$$

Let $\left(v^{0}, \sigma^{0}\right)$ be a solution of boundary-value problem 1. Then [1] v^{0} is a solution of the following variational problem.

Problem 2. It is required to find the field v^{0} which, on the set $A \cap M$, gives a minimum of the functional

$$
J(v)=1 / 2 \mu \int_{\Omega}|e(v)|^{2} d x+\tau_{s} \int_{\Omega}|e(v)| d x-\int_{\partial \Omega_{F}}\left(F^{*}, v\right) d S+k \int_{\partial \Omega_{c}}\left|v_{t}-w_{t}\right| d S
$$

We shall assume that the kinematic conditions do not allow Ω to move as an absolutely solid body, that is, if the field v is the difference of the fields from A and $e(v) \equiv 0$, then $v \equiv 0$. On this assumption [1], it can be stated that the solution of Problem 2 exists and is unique.

3. SADDLE POINT

The difficulty that arises in solving Problem 2 is that a minimum of the functional J must be sought for fields v satisfying the incompressibility condition $v \in M$, and not over the whole set A. This difficulty is removed [2] by introducing Lagrange multipliers. Let $p \in L^{2}=L^{2}(\Omega)$. We put

$$
G(v, p)=J(v)+\int_{\Omega} p \operatorname{div}(v) d x
$$

Problem 3. It is required to find a saddle point $\left(v^{0}, p^{0}\right)$ of the function G on the set $A \times L^{2}$, that is

$$
G\left(v^{0}, p^{0}\right)=\min _{v \in A} \sup _{p \in L^{2}} G(v, p)=\max _{p \in L^{2}} \inf _{v \in A} G(v, p)
$$

It can be verified that Problem 3 has a unique solution $\left(v^{0}, p^{0}\right)$. The field v^{0} is the solution of Problem 2. In fact, since

$$
G\left(v^{0}, p^{0}\right)=J\left(4^{0}\right)+\sup _{p \in L^{2}} \int_{\Omega} p \operatorname{div}\left(v^{0}\right) d x<+\infty
$$

we have $\operatorname{div}\left(v^{0}\right)=0$, and $v^{0} \in M$. Thus

$$
J\left(v^{0}\right)=G\left(v^{0}, p^{0}\right)=\min _{v \in A} G\left(v, p^{0}\right) \leqslant \min _{v \in A \cap M} G\left(v, p^{0}\right)=\min _{v \in A \cap M} J(v)
$$

4. STRESS TENSOR

Since $v^{0} \in H^{1}(\Omega)$, the stress tensor $\sigma^{0} \in T(\Omega)$ and it is therefore impossible to introduce the
density of surface forces F on $\partial \Omega$ with the formula $F_{i}=\sigma_{i j} n_{j}$. A weak formulation of the boundary condition for forces is therefore needed. We put

$$
R(\Omega)=\left\{\sigma=\left\{\sigma_{i j}\right\} \in T(\Omega): \partial \sigma_{i j} / \partial x_{j}=0 \quad i=1,2,3\right\}
$$

If σ has continously differentiable components and satisfies the equilibrium equations, then

$$
\int_{\Omega}\langle 0, e(v)\rangle d x=\int_{\partial \Omega} \sigma_{i j} n_{j} v_{i} d S, \quad \forall v \in H^{1}(\Omega)
$$

Using this equation, it can be shown [3] that there exists a unique continuous linear operator

$$
\nu: R(\Omega) \rightarrow H^{-1 / 2}(\partial \Omega)
$$

such that if the tensor σ has continuous components, the function $\nu(\sigma)$ operates subject to the formula

$$
\nu(\sigma)(u)=\int_{\partial \Omega}(F, u) d S, \quad \forall u \in H^{1 / 2}(\partial \Omega) ; \quad F=\left\{F_{i}\right\}, \quad F_{i}=\sigma_{i j} n_{j}
$$

We shall call $\nu(\sigma)$ the force density on $\partial \Omega$ corresponding to the tensor σ. For $\nu(\sigma)$ it is reasonable to introduce $\nu_{i}(\sigma) \in H^{-1 / 2}(\partial \Omega)$ such that

$$
\nu(\sigma)(u)=\sum_{i=1}^{3} \nu_{i}(\sigma)\left(u_{i}\right), \quad \forall u=\left\{u_{i}\right\} \in H^{1 / 2}(\partial \Omega)
$$

(We write $\nu(\sigma)=\left\{\nu_{i}(\sigma)\right\}$, and call $\nu_{i}(\sigma)$ a component of $\nu(\sigma)$.) We also introduce functionals $\nu_{n}(\sigma)$ and $\nu_{t}(\sigma)$, which we call the normal and tangential components.

The boundary conditions on the forces in Problem 1 will be understood in a general sense, that is, the functional $\nu(\sigma)$ is used instead of density functions. The following assertion is proved in the usual way.

Assertion. Let $\left(v^{0}, p^{0}\right)$ be a saddle point of Problem 3. Then a deviator $s^{0} \in \partial \varphi\left(e\left(v^{0}\right)\right)$ exists such that the pair $\left(v^{0}, \sigma^{0}\right)$, where $\sigma^{0}=\left\{\sigma_{i j}^{0}\right\}, \sigma_{i j}^{0}=s_{i j}^{0}+p^{0} \delta_{i j}\left(\delta_{i j}\right.$ is the Kronecker delta) is a (generalized) solution of boundary-value problem 1 .

5. THE UZAWA ALGORITHM

The saddle point of Problem 3 can be found using the Uzawa algorithm [4]. For fixed p we find the minimum with respect to v of the functional

$$
G(v, p)=J(v)+\int_{\Omega} p \operatorname{div}(v) d x
$$

The functional J is non-differentiable, making minimization difficult. We therefore make a slight modification to Problem 3. Let

$$
\begin{aligned}
& Q=\left\{q=\left\{q_{t}\right\} \in T(\Omega):|q(x)| \leqslant r_{s} \text { almost everywhere in } \Omega\right\} \\
& \left.R=\left\{r=\mid r_{i}\right\} \in L^{2}\left(\partial \Omega_{c}\right):|r(x)| \leqslant k \text { almost everywhere in } \partial \Omega_{c}\right\}
\end{aligned}
$$

We put $Z=L^{2}(\Omega) \times T(\Omega) \times L^{2}\left(\Omega_{c}\right), B=L^{2}(\Omega) \times Q \times R \subset Z$. Let

$$
\begin{aligned}
& L(v, z)=\not / 2 \mu \int_{\Omega}|e(v)|^{2} d x+\int_{\Omega}\langle q, e(v)\rangle d x+\int_{\Omega} p \operatorname{div}(v) d x-\int_{\partial \Omega_{F}}\left(F^{*} ; v\right) d S+ \\
& +\int_{\partial \Omega_{c}}\left(r, v_{t}-w_{t}\right) d S, \quad v \in A, \quad z=(p, q, r) \in Z
\end{aligned}
$$

Instead of Problem 3, consider the following.

Problem 4. It is required to find a saddle point $\left(v^{0}, z^{0}\right)$ of the functional L on the set $A \times B$, that is

$$
L\left(v^{0}, z^{0}\right)=\min _{v \in A} \sup _{z \in B} L(v, z)=\max _{z \in B} \inf _{v \in A} L(v, z)
$$

If $\left(v^{0}, z^{0}\right), z^{0}=\left(p^{0}, q^{0}, r^{0}\right)$ is a solution of Problem 4, from the equations

$$
\tau_{s} \int_{\Omega}|e(v)| d x=\max _{q \in Q} \int_{\Omega}\langle q, e(v)\rangle d x, \quad k \int_{\partial \Omega_{c}}\left|v_{t}-w_{t}\right| d S=\max _{r \in R} \int_{\partial \Omega_{c}}\left(r, v_{t}-w_{t}\right) d S
$$

it follows that $\left(v^{0}, p^{0}\right)$ is a solution of Problem 3. It can also be seen that q^{0} is the deviator and $\left\{p^{0} \delta_{i j}\right\}$ is the spherical part of the real stress tensor, that is, the solution of Problem 1 can be found by solving Problem 4.

We will describe the Uzawa algorithm for Problem 4. Let $\Phi: Z \rightarrow A$ be an operator such that $v=\Phi(z)$ is a minimum point on the set A of the functional $L(v, z)$ with respect to v for given z. The algorithm is as follows. We choose an arbitrary initial value $z^{(1)} \in B$. Each step of the process can be described as follows:

1. for fixed $z^{(n)} \in B$, find $v^{(n+1)}=\Phi\left(z^{(n)}\right)$,
2. the next value $z^{(n+1)}=\left(p^{(n+1)}, q^{(n+1)}, r^{(n+1)}\right)$ is computed using the formulae: $p^{(n+1)}=$ $p^{(n)}+\rho \operatorname{div} v^{(n)} ; q^{(n+1)}$ is the projection on Q of the element $q^{(n)}+\rho e\left(v^{(n)}\right) ; r^{(n+1)}$ is the projection on R of the element $r^{(n)}+\rho\left(v_{t}^{(n)}-w_{t}\right)$. The number $\rho \in\left(0, \rho_{\max }\right)$ and there is a limit for $\rho_{\text {Intax }}$.

Thus, the algorithm essentially consists of computing values of the operator $\Phi . v=\Phi(p, q, r)$ is calculated in two stages: v on $\partial \Omega$ is first found using an integral equation, and then v inside Ω is calculated from an explicit equation. Suppose first that p, q and r are continuously differentiable. Since $v=\left\{v_{i}\right\}$ is the point of the minimum of functional L on A for fixed p, q and r, for any permissible variation of the field $\zeta=\left\{\zeta_{i}\right\}$, that is $\zeta \in \mathbf{H}^{1}(\Omega), \zeta=0$ on $\partial \Omega_{v}, \zeta_{n}$ on $\partial \Omega_{c}$, we have

$$
\begin{align*}
& I_{1}+I_{2}+I_{3}-\int_{-\partial \Omega_{F}}\left(F^{*}, \zeta\right) d S+\int_{\partial \Omega_{c}}\left(r, \zeta_{t}\right) d S=0 \tag{1}\\
& I_{1}=\int_{\Omega} \mu\langle e(v), e(\zeta)\rangle d x, \quad I_{2}=\int_{\Omega}\langle q, e(\zeta)\rangle d x, \quad I_{3}=\int_{\Omega} p \operatorname{div}(\zeta) d x
\end{align*}
$$

Integrating by parts, we obtain

$$
\begin{aligned}
& I_{1}=\int_{\partial \Omega} \mu e_{i j}(v) n_{j} \zeta_{i} d S-\int_{\Omega} \mu \frac{\partial e_{i j}(v)}{\partial x_{j}} \zeta_{i} d x \\
& I_{2}=\int_{\partial \Omega} q_{i j} n_{j} \zeta_{i} d S-\int_{\Omega} \frac{\partial q_{i j}}{\partial x_{j}} \zeta_{i} d x, \quad I_{3}=\int_{\partial \Omega} p \zeta_{i} n_{i} d S-\int_{\Omega} \frac{\partial p}{\partial x_{i}} \zeta_{i} d x
\end{aligned}
$$

From (1) it follows that

$$
\begin{gather*}
\mu \frac{\partial e_{i j}(v)}{\partial x_{j}}+b_{i}=0, \quad\left(b_{i}=\frac{\partial \varphi_{i j}}{\partial x_{j}}+\frac{\partial p}{\partial x_{i}}\right) \tag{2}\\
F=F^{*} \text { on } \partial \Omega_{F}, F_{t}=-r \text { on } \partial \Omega_{c}\left(F=F_{i}, \quad F_{i}=\mu e_{i j}(v) n_{j}+q_{i j} n_{j}+p n_{i}\right) \tag{3}
\end{gather*}
$$

Equations (2) are of the form of equilibrium equations for an elastic medium with modulus of elasticity for shear $G=\mu / 2$ and Poisson's ratio $\nu=0$ subjected to a force with volume density b_{i}.

Let

$$
\begin{aligned}
& u^{(k)(\xi, x)=\left\{u_{i}^{(k)}(\xi, x)\right\}, \quad F^{(k)}(\xi, x)=\left\{F_{i}^{(k)}(\xi, x)\right\}, \quad k=1,2,3} \begin{array}{l}
u_{i}^{(k)}(\xi, x)=\frac{1}{8 \pi \mu r}\left(3 \delta_{i k}+\frac{r_{i} r_{k}}{r^{2}}\right) \\
F_{i}^{(k)}(\xi, x)=-\frac{1}{8 \pi \mu r^{2}}\left\{\left(\delta_{i k}+\frac{r_{i} r_{k}}{r^{2}}\right) \frac{\partial r}{\partial n}-\frac{r_{i} n_{k}-r_{k} n_{i}}{r}\right\} \\
r=\left(r_{i} r_{i}\right)^{1 / 2}, \quad r_{i}=x_{i}-\xi_{i}
\end{array} .
\end{aligned}
$$

Then [5] (putting $G=\mu / 2$ and $\nu=0$) we find that $u^{(k)}(\xi, x)$ is a fundamental solution of Eq. (3) and $F_{i}^{(k)}=\sigma_{i j}^{(k)} n_{j}$ on the set $\partial \Omega$, where $\sigma_{i j}^{(k)}=\mu e_{i j}\left(u^{(k)}\right)$. From Eq. (2) it follows that

$$
\begin{align*}
& I_{5}+I_{6}=0 \tag{4}\\
& I_{5}=\int_{\Omega} \mu \frac{\partial e_{i j}(v)}{\partial x_{j}} u_{i}^{(k)}(\xi, x) d x, \quad I_{6}=\int_{\Omega} b_{i}(x) u_{i}^{(k)}(\xi, x) d x
\end{align*}
$$

We have

$$
\begin{aligned}
& I_{5}=\int_{\partial \Omega} \mu e_{i j}(v) n_{j} u_{i}^{(k)} d S(x)-\int_{\Omega} \mu e_{i j}(v) e_{i j}\left(u^{(k)}\right) d x= \\
& =\int_{\partial \Omega} \mu e_{i j}(v) n_{j} u_{i}^{(k)} d S(x)-\int_{\partial \Omega} F_{i}^{(k)} v_{i} d S(x)+\int_{\Omega} \mu \frac{\partial e_{i j}\left(u^{(k)}\right)}{\partial x_{i}} v_{i} d x \\
& I_{6}=\int_{\Omega}\left[\frac{\partial q_{i j}}{\partial x_{j}}+\frac{\partial p}{\partial x_{i}}\right] u_{i}^{(k)} d x=\int_{\partial \Omega}\left(q_{i j} n_{j}+p n_{i}\right) u_{i}^{(k)} d S(x)- \\
& -\int_{\Omega} q_{i j} \frac{\partial u_{i}^{(k)}}{\partial x_{j}} d x-\int_{\Omega} p \frac{\partial u_{i}^{(k)}}{\partial x_{i}} d x
\end{aligned}
$$

Since $u^{(k)}$ is a fundamental solution, for $\forall \xi \in \operatorname{int} \Omega$ the last integral in the expression for I_{5} is equal to $-v_{k}(\xi)$. Thus, from (4) and the definition of F in (3) for $\xi \in \operatorname{int} \Omega$ we have

$$
\begin{align*}
& v_{k}(\xi)=\int_{\partial \Omega} F_{i}(x) u_{i}^{(k)}(\xi, x) d S(x)-\int_{\partial \Omega} F_{i}^{(k)}(\xi, x) v_{i}(x) d S(x)- \\
& -\int_{\Omega} q_{i j}(x) \frac{\partial u_{i}^{(k)}(\xi, x)}{\partial x_{j}} d x-\int_{\Omega} p(x) \frac{\partial u_{i}^{(k)}(\xi, x)}{\partial x_{i}} d x \tag{5}
\end{align*}
$$

Integral equations for $v(\xi)$ on $\partial \Omega$ are obtained similarly

$$
\begin{align*}
& c_{k i}(\xi) v_{i}(\xi)=\int_{\partial \Omega} F_{i} u_{i}^{(k)} d S(x)-\int_{\partial \Omega} F_{i}^{(k)} v_{i} d S(x)-\int_{\Omega} q_{i j} \frac{\partial u_{i}^{(k)}}{\partial x_{i}} d x- \\
& -\int_{\Omega} p \frac{\partial u_{i}^{(k)}}{\partial x_{i}} d x, \quad k=1,2,3 \tag{6}
\end{align*}
$$

Formulae for $c_{k i}(\xi)$ exist [5]. In particular, at smooth points $c_{k i}(\xi)=\delta_{k i} / 2$.
Thus, the first stage in the calculation of $v=\Phi(p, q, r)$ is to find fields $v=\left\{v_{i}\right\}, F=\left\{F_{i}\right\}$ on $\partial \Omega$ such that the integral equations (6) apply and $v=v^{*}$ on $\partial \Omega_{v}, F=F^{*}$ on $\partial \Omega_{F}, F_{t}=-r$ on $\partial \Omega_{c}$. We then find v in int Ω using formula (5).

The calculation of $v=\Phi(p, q, r)$ has been examined for the case where p, q and r are continuously differentiable. Since the operator Φ is continuous, the calculation is also valid in the general case.

Note. If the values of the operator Φ are calculated in the usual way, discrete approximation of the problem leads to the finite element method. The method described above leads to the boundary element method.

REFERENCES

[^0]
[^0]: 1. MOSOLOV P. P. and MYASNIKOV V. P., Mechanics of Rigid Plastic Media. Nauka, Moscow, 1981.
 2. GLOVINSKY R., LYONS J.-L. and TREMOLIERE R., A Numerical Investigation of Variational Inequalities. Mir, Moscow, 1979.
 3. LYONS J.-L. and MAGENES Ye., Non-uniform Boundary-value Problems and their Application, Vol. 1. Mir, Moscow, 1971.
 4. ECKLAND I. and TEMAM R., Convex Analysis and Vibrational Problems. Mir, Moscow, 1979.
 5. BREBBIA C. A., TELLES J. C. F. and WROUBEL L. C., Boundary Element Techniques. Mir, Moscow, 1987.
