THE BOUNDARY ELEMENT METHOD FOR CALCULATING VISCO-RIGID PLASTIC FLOWS[†]

YE. G. POLISHCHUK

Ekaterinburg

(Received 24 June 1991)

A method of solving the boundary-value problem for a visco-rigid plastic medium is considered which leads to the method of boundary elements.

1. STATEMENT OF THE PROBLEM

WE WILL use the following notation: R^3 is a space with fixed Euclidean coordinates x_1 , x_2 and x_3 ; Ω is a region of R^3 of class C^1 , i.e. the boundary $\partial\Omega$ is a two-dimensional manifold of class C^1 and the region Ω is situated locally on one side of $\partial\Omega$; $v = \{v_i\}$ is the velocity field in Ω , $e(v) = \{e_{ij}(v)\}$ is the strain rate tensor $(e_{ij} = \frac{1}{2}(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i})i, j = 1, 2, 3$; $\sigma = \{\sigma_{ij}\}$ is the stress tensor, and $s = \{s_{ij}\}$ is its deviator. For points from $\partial\Omega$, **n** denotes the unit external normal, $\mathbf{F} = \{F_i\}$ ($F_i = \sigma_{ij}n_j$) is the force density vector on $\partial\Omega$ (here and below summation over repeated indices is assumed); for any vector **a** applied at a point of $\partial\Omega$, a_n denotes its projection on the normal and a_i its tangential component, $|\mathbf{a}|$ is its length and (\cdot, \cdot) the corresponding scalar product; for $e = \{e_{ij}\}, q = \{q_{ij}\}$ we assume $\langle e, q \rangle = e_{ij}q_{ij}$ and $|e| = (e_{ij}e_{ij})^{1/2}$; the measure in $R^3 dx = dx_1 dx_2 dx_3$, and dS is the measure on $\partial\Omega$ generated by dx; $T(\Omega) [D(\Omega)]$ is the space of stress tensors $\sigma(x)$ [deviators s(x)] in Ω with components from $L^2(\Omega)$; $H^{1}(\Omega)$ is the space of vector fields $\mathbf{v} = \{v_i\}$ in $\partial\Omega$ such that v_i belongs to the Sobolev space $H^{1/2}(\partial\Omega)$; $H^{-1/2}(\partial\Omega)$ is the space of linear continuous functionals on $H^{1/2}(\partial\Omega)$.

Consider a visco-rigid plastic medium, that is, a medium which is incompressible and for which the deviator of the stress tensor is defined [1] by the plastic potential

$$\varphi(e) = \frac{1}{2} \mu |e|^2 + \tau_s |e|$$

where μ is the coefficient of viscosity and τ_s is the yield point. We require the deviator s to belong to the subdifferential $\partial \varphi[e(v)]$, that is $s = \mu e(v) + \tau_s e(v)/|e(v)|$ if $e(v) \neq 0$, and $|s| \leq \tau_s$ if e(v) = 0.

For slow (quasi-stationary) processes, the real velocity and stress fields are defined by the following boundary-value problem.

Problem 1. In the region Ω , it is required to find the velocity field v and the stress tensor σ satisfying the following conditions:

1. the velocity field satisfies the condition div(v) = 0;

2. the equilibrium equations $\partial \sigma_{ij} / \partial x_j = 0$, i = 1, 2, 3 apply;

3. the equation of state of the medium $s \in \partial \varphi(e(v))$;

4. boundary conditions: the boundary $\partial \Omega$ consists of three parts with non-zero areas $\partial \Omega_F$, $\partial \Omega_v$, $\partial \Omega_c$.

Here $\partial \Omega_F$ is the part of the surface where the forces $\mathbf{F} = \mathbf{F}^*$ are given; $\partial \Omega_v$ is the part of the surface where the velocities $\mathbf{v} = \mathbf{v}^*$ are given; $\partial \Omega_c$ is the area of contact with the instrument, on which the kinetic constraint and condition of friction described below apply: (a) for the field \mathbf{v} and

[†] Prikl. Mat. Mekh. Vol. 56, No. 5, pp. 796-800, 1992.

velocity of the instrument w, the normal components are equal; (b) the tangential components \mathbf{f}_t of the force F satisfies the condition $|\mathbf{F}_t| \leq k = \text{const}$, where if $|\mathbf{F}_t| < k$ at a given point, then $\mathbf{v}_t = \mathbf{w}_t$ (sticking); but if $|\mathbf{F}_t| = k$, then the vector $(\mathbf{v}_t - \mathbf{w}_t)$ is in the opposite direction to \mathbf{F}_t (sliding).

2. VARIATIONAL FORMULATION

Let

$$A = \{ \mathbf{v} \in H^1(\Omega) : v = v^* \text{ ha } \partial \Omega_v, v_n = w_n \text{ on } \partial \Omega_c \}$$
$$M = \{ \mathbf{v} \in H^1(\Omega) : \text{ div}(v) = 0 \}$$

Let (v^0, σ^0) be a solution of boundary-value problem 1. Then [1] v^0 is a solution of the following variational problem.

Problem 2. It is required to find the field v^0 which, on the set $A \cap M$, gives a minimum of the functional

$$J(v) = \frac{1}{2} \mu \int_{\Omega} |e(v)|^2 dx + \tau_s \int_{\Omega} |e(v)| dx - \int_{\partial \Omega_F} (F^*, v) dS + k \int_{\partial \Omega_c} |v_t - w_t| dS$$

We shall assume that the kinematic conditions do not allow Ω to move as an absolutely solid body, that is, if the field v is the difference of the fields from A and $e(v) \equiv 0$, then $v \equiv 0$. On this assumption [1], it can be stated that the solution of Problem 2 exists and is unique.

3. SADDLE POINT

The difficulty that arises in solving Problem 2 is that a minimum of the functional J must be sought for fields v satisfying the incompressibility condition $v \in M$, and not over the whole set A. This difficulty is removed [2] by introducing Lagrange multipliers. Let $p \in L^2 = L^2(\Omega)$. We put

$$G(v, p) = J(v) + \int_{\Omega} p \operatorname{div}(v) dx$$

Problem 3. It is required to find a saddle point (v^0, p^0) of the function G on the set $A \times L^2$, that is

$$G(v^{0}, p^{0}) = \min_{v \in A} \sup_{p \in L^{2}} G(v, p) = \max_{p \in L^{2}} \inf_{v \in A} G(v, p)$$

It can be verified that Problem 3 has a unique solution (v^0, p^0) . The field v^0 is the solution of Problem 2. In fact, since

$$G(v^0, p^0) = J(u^0) + \sup_{p \in L^2} \int_{\Omega} p \operatorname{div}(v^0) dx < +\infty$$

we have $\operatorname{div}(v^0) = 0$, and $v^0 \in M$. Thus

$$J(v^{0}) = G(v^{0}, p^{0}) = \min_{v \in A} G(v, p^{0}) \le \min_{v \in A \cap M} G(v, p^{0}) = \min_{v \in A \cap M} J(v)$$

4. STRESS TENSOR

Since $v^0 \in H^1(\Omega)$, the stress tensor $\sigma^0 \in T(\Omega)$ and it is therefore impossible to introduce the

density of surface forces F on $\partial \Omega$ with the formula $F_i = \sigma_{ij} n_j$. A weak formulation of the boundary condition for forces is therefore needed. We put

$$R(\Omega) = \{\sigma = \{\sigma_{ij}\} \in T(\Omega): \ \partial \sigma_{ij} / \partial x_j = 0 \qquad i = 1, 2, 3\}$$

If σ has continously differentiable components and satisfies the equilibrium equations, then

$$\int_{\Omega} \langle \sigma, e(v) \rangle dx = \int_{\partial \Omega} \sigma_{ij} n_j v_i dS, \quad \forall v \in H^1(\Omega)$$

Using this equation, it can be shown [3] that there exists a unique continuous linear operator

$$\nu \colon R(\Omega) \to H^{-\frac{1}{2}}(\partial\Omega)$$

such that if the tensor σ has continuous components, the function $\nu(\sigma)$ operates subject to the formula

$$\nu(\sigma)(u) = \int_{\partial \Omega} (F, u) \, dS, \quad \forall u \in H^{\frac{1}{2}}(\partial \Omega); \quad F = \{F_i\}, \quad F_i = \sigma_{ij} n_j$$

We shall call $\nu(\sigma)$ the force density on $\partial\Omega$ corresponding to the tensor σ . For $\nu(\sigma)$ it is reasonable to introduce $\nu_i(\sigma) \in H^{-1/2}(\partial\Omega)$ such that

$$\nu(\sigma)(u) = \sum_{i=1}^{3} \nu_i(\sigma)(u_i), \quad \forall u = \{u_i\} \in H^{\frac{1}{2}}(\partial\Omega)$$

(We write $\nu(\sigma) = \{\nu_i(\sigma)\}\)$, and call $\nu_i(\sigma)$ a component of $\nu(\sigma)$.) We also introduce functionals $\nu_n(\sigma)$ and $\nu_t(\sigma)$, which we call the normal and tangential components.

The boundary conditions on the forces in Problem 1 will be understood in a general sense, that is, the functional $\nu(\sigma)$ is used instead of density functions. The following assertion is proved in the usual way.

Assertion. Let (v^0, p^0) be a saddle point of Problem 3. Then a deviator $s^0 \in \partial \varphi(e(v^0))$ exists such that the pair (v^0, σ^0) , where $\sigma^0 = \{\sigma_{ij}^0\}, \sigma_{ij}^0 = s_{ij}^0 + p^0 \delta_{ij}$ (δ_{ij} is the Kronecker delta) is a (generalized) solution of boundary-value problem 1.

5. THE UZAWA ALGORITHM

The saddle point of Problem 3 can be found using the Uzawa algorithm [4]. For fixed p we find the minimum with respect to v of the functional

$$G(v, p) = J(v) + \int_{\Omega} p \operatorname{div}(v) dx$$

The functional J is non-differentiable, making minimization difficult. We therefore make a slight modification to Problem 3. Let

$$Q = \{q = \{q_{ij}\} \in T(\Omega): |q(x)| \le r_s \text{ almost everywhere in } \Omega\}$$

$$R = \{r = \{r_i\} \in L^2(\partial \Omega_c): |r(x)| \le k \text{ almost everywhere in } \partial \Omega_c\}$$

We put $Z = L^2(\Omega) \times T(\Omega) \times L^2(\Omega_c)$, $B = L^2(\Omega) \times Q \times R \subset Z$. Let

$$L(v, z) = \frac{1}{2} \mu \int_{\Omega} |e(v)|^2 dx + \int_{\Omega} \langle q, e(v) \rangle dx + \int_{\Omega} p \operatorname{div}(v) dx - \int_{\partial \Omega_F} (F^*; v) dS + \int_{\partial \Omega_C} (r, v_t - w_t) dS, \quad v \in A, \quad z = (p, q, r) \in \mathbb{Z}$$

Instead of Problem 3, consider the following.

Problem 4. It is required to find a saddle point (v^0, z^0) of the functional L on the set $A \times B$, that is

$$L(v^0, z^0) = \min_{v \in A} \sup_{z \in B} L(v, z) = \max_{z \in B} \inf_{v \in A} L(v, z)$$

If $(v^0, z^0), z^0 = (p^0, q^0, r^0)$ is a solution of Problem 4, from the equations

$$\tau_s \int_{\Omega} |e(v)| dx = \max_{q \in Q} \int_{\Omega} \langle q, e(v) \rangle dx, \quad k \int_{\partial \Omega_c} |v_t - w_t| dS = \max_{r \in R} \int_{\partial \Omega_c} (r, v_t - w_t) dS$$

it follows that (v^0, p^0) is a solution of Problem 3. It can also be seen that q^0 is the deviator and $\{p^0 \delta_{ii}\}$ is the spherical part of the real stress tensor, that is, the solution of Problem 1 can be found by solving Problem 4.

We will describe the Uzawa algorithm for Problem 4. Let $\Phi: Z \rightarrow A$ be an operator such that $v = \Phi(z)$ is a minimum point on the set A of the functional L(v, z) with respect to v for given z. The algorithm is as follows. We choose an arbitrary initial value $z^{(1)} \in B$. Each step of the process can be described as follows:

1. for fixed $z^{(n)} \in B$, find $v^{(n+1)} = \Phi(z^{(n)})$, 2. the next value $z^{(n+1)} = (p^{(n+1)}, q^{(n+1)}, r^{(n+1)})$ is computed using the formulae: $p^{(n+1)} = p^{(n)} + \rho \operatorname{div} v^{(n)}; q^{(n+1)}$ is the projection on Q of the element $q^{(n)} + \rho e(v^{(n)}); r^{(n+1)}$ is the projection on R of the element $r^{(n)} + \rho(v_t^{(n)} - w_t)$. The number $\rho \in (0, \rho_{\max})$ and there is a limit for ρ_{\max} .

Thus, the algorithm essentially consists of computing values of the operator Φ . $v = \Phi(p, q, r)$ is calculated in two stages: v on $\partial\Omega$ is first found using an integral equation, and then v inside Ω is calculated from an explicit equation. Suppose first that p, q and r are continuously differentiable. Since $v = \{v_i\}$ is the point of the minimum of functional L on A for fixed p, q and r, for any permissible variation of the field $\zeta = \{\zeta_i\}$, that is $\zeta \in \mathbf{H}^1(\Omega)$, $\zeta = 0$ on $\partial \Omega_{\nu}$, ζ_n on $\partial \Omega_c$, we have

$$I_{1} + I_{2} + I_{3} - \int_{\partial \Omega_{F}} (F^{*}, \zeta) dS + \int_{\partial \Omega_{c}} (r, \zeta_{t}) dS = 0$$

$$I_{1} = \int_{\Omega} \mu \langle e(v), e(\zeta) \rangle dx, \quad I_{2} = \int_{\Omega} \langle q, e(\zeta) \rangle dx, \quad I_{3} = \int_{\Omega} p \operatorname{div}(\zeta) dx$$
(1)

Integrating by parts, we obtain

$$I_{1} = \int_{\partial \Omega} \mu e_{ij}(v) n_{j} \zeta_{i} dS - \int_{\Omega} \mu \frac{\partial e_{ij}(v)}{\partial x_{j}} \zeta_{i} dx$$
$$I_{2} = \int_{\partial \Omega} q_{ij} n_{j} \zeta_{i} dS - \int_{\Omega} \frac{\partial q_{ij}}{\partial x_{j}} \zeta_{i} dx, \quad I_{3} = \int_{\partial \Omega} p \zeta_{i} n_{i} dS - \int_{\Omega} \frac{\partial p}{\partial x_{i}} \zeta_{i} dx$$

From (1) it follows that

$$\mu \frac{\partial e_{ij}(v)}{\partial x_j} + b_i = 0, \quad (b_i = \frac{\partial q_{ij}}{\partial x_j} + \frac{\partial p}{\partial x_i})$$
(2)

$$F = F^{\bullet} \quad \text{on} \quad \partial\Omega_F, \quad F_t = -r \quad \text{on} \quad \partial\Omega_c \left(F = F_i, \quad F_i = \mu e_{ij}(v) n_j + q_{ij}n_j + pn_i\right)$$
(3)

Equations (2) are of the form of equilibrium equations for an elastic medium with modulus of elasticity for shear $G = \mu/2$ and Poisson's ratio $\nu = 0$ subjected to a force with volume density b_i . Let

$$u^{(k)}(\xi, x) = \{ u_i^{(k)}(\xi, x) \}, \quad F^{(k)}(\xi, x) = \{ F_i^{(k)}(\xi, x) \}, \quad k = 1, 2, 3$$
$$u_i^{(k)}(\xi, x) = \frac{1}{8\pi\mu r} (3\delta_{ik} + \frac{r_i r_k}{r^2})$$
$$F_i^{(k)}(\xi, x) = -\frac{1}{8\pi\mu r^2} \{ (\delta_{ik} + \frac{r_i r_k}{r^2}) \frac{\partial r}{\partial n} - \frac{r_i n_k - r_k n_i}{r} \}$$
$$r = (r_i r_i)^{\frac{1}{2}}, \quad r_i = x_i - \xi_i$$

Then [5] (putting $G = \mu/2$ and $\nu = 0$) we find that $u^{(k)}(\xi, x)$ is a fundamental solution of Eq. (3) and $F_i^{(k)} = \sigma_{ij}^{(k)} n_j$ on the set $\partial \Omega$, where $\sigma_{ij}^{(k)} = \mu e_{ij}(u^{(k)})$. From Eq. (2) it follows that

$$I_{5} + I_{6} = 0$$

$$I_{5} = \int_{\Omega} \mu \frac{\partial e_{ij}(v)}{\partial x_{i}} u_{i}^{(k)}(\xi, x) dx, \quad I_{6} = \int_{\Omega} b_{i}(x) u_{i}^{(k)}(\xi, x) dx$$
(4)

We have

$$I_{5} = \int_{\partial \Omega} \mu e_{ij}(v) n_{j} u_{i}^{(k)} dS(x) - \int_{\Omega} \mu e_{ij}(v) e_{ij}(u^{(k)}) dx =$$

$$= \int_{\partial \Omega} \mu e_{ij}(v) n_{j} u_{i}^{(k)} dS(x) - \int_{\partial \Omega} F_{i}^{(k)} v_{i} dS(x) + \int_{\Omega} \mu \frac{\partial e_{ij}(u^{(k)})}{\partial x_{j}} v_{i} dx$$

$$I_{6} = \int_{\Omega} \left[\frac{\partial q_{ij}}{\partial x_{j}} + \frac{\partial p}{\partial x_{i}} \right] u_{i}^{(k)} dx = \int_{\partial \Omega} (q_{ij} n_{j} + pn_{i}) u_{i}^{(k)} dS(x) -$$

$$- \int_{\Omega} q_{ij} \frac{\partial u_{i}^{(k)}}{\partial x_{j}} dx - \int_{\Omega} p \frac{\partial u_{i}^{(k)}}{\partial x_{i}} dx$$

Since $u^{(k)}$ is a fundamental solution, for $\forall \xi \in int \Omega$ the last integral in the expression for I_5 is equal to $-v_k(\xi)$. Thus, from (4) and the definition of F in (3) for $\xi \in int \Omega$ we have

$$v_{k}(\xi) = \int_{\partial \Omega} F_{i}(x)u_{i}^{(k)}(\xi, x)dS(x) - \int_{\partial \Omega} F_{i}^{(k)}(\xi, x)v_{i}(x)dS(x) - \int_{\partial \Omega} \int_{\partial \Omega} \int_{\partial \Omega} F_{i}^{(k)}(\xi, x)v_{i}(x)dS(x) - \int_{\partial \Omega} \int_{\partial$$

Integral equations for $v(\xi)$ on $\partial \Omega$ are obtained similarly

$$c_{ki}(\xi)v_{i}(\xi) = \int_{\partial\Omega} F_{i}u_{i}^{(k)}dS(x) - \int_{\partial\Omega} F_{i}^{(k)}v_{i}dS(x) - \int_{\Omega} q_{ij}\frac{\partial u_{i}^{(k)}}{\partial x_{j}}dx - \int_{\Omega} p\frac{\partial u_{i}^{(k)}}{\partial x_{i}}dx, \quad k = 1, 2, 3$$
(6)

Formulae for $c_{ki}(\xi)$ exist [5]. In particular, at smooth points $c_{ki}(\xi) = \delta_{ki}/2$.

Thus, the first stage in the calculation of $v = \Phi(p, q, r)$ is to find fields $v = \{v_i\}$, $F = \{F_i\}$ on $\partial\Omega$ such that the integral equations (6) apply and $v = v^*$ on $\partial\Omega_v$, $F = F^*$ on $\partial\Omega_F$, $F_t = -r$ on $\partial\Omega_c$. We then find v in int Ω using formula (5).

The calculation of $v = \Phi(p, q, r)$ has been examined for the case where p, q and r are continuously differentiable. Since the operator Φ is continuous, the calculation is also valid in the general case.

Note. If the values of the operator Φ are calculated in the usual way, discrete approximation of the problem leads to the finite element method. The method described above leads to the boundary element method.

REFERENCES

- 1. MOSOLOV P. P. and MYASNIKOV V. P., Mechanics of Rigid Plastic Media. Nauka, Moscow, 1981.
- 2. GLOVINSKY R., LYONS J.-L. and TREMOLIERE R., A Numerical Investigation of Variational Inequalities. Mir, Moscow, 1979.
- 3. LYONS J.-L. and MAGENES Ye., Non-uniform Boundary-value Problems and their Application, Vol. 1. Mir, Moscow, 1971.
- 4. ECKLAND I. and TEMAM R., Convex Analysis and Vibrational Problems. Mir, Moscow, 1979.
- 5. BREBBIA C. A., TELLES J. C. F. and WROUBEL L. C., Boundary Element Techniques. Mir, Moscow, 1987.

Translated by R.L.